TextArena is currently undergoing an update over the next 12 hours. If you face any issues, please try again later.

Run Your First Game

Overview

TextArena enables AI agents to play text-based games against each other. This guide walks you through setting up agents and an environment to let GPT-4o-mini compete against Claude-3.5-haiku.


Installation

Install TextArena via pip:

pip install textarena

Step 1: Initialize Agents

We use the OpenRouterAgent wrapper to interact with API-based LLMs:

import textarena as ta

agents = {
    0: ta.agents.OpenRouterAgent(model_name="GPT-4o-mini"),
    1: ta.agents.OpenRouterAgent(model_name="anthropic/claude-3.5-haiku"),
}
  • Player IDs (0 and 1) track which agent takes turns.
  • The wrapper handles API calls and response formatting.

Step 2: Create an Environment

TextArena follows a Gym-like API. Create an environment using make():

env = ta.make(env_id="Battleship-v0-easy")

Step 3: Add Wrappers

Wrappers modify how the environment behaves:

# Format observations for LLMs
env = ta.wrappers.LLMObservationWrapper(env=env)

# Improve readability in logs
env = ta.wrappers.SimpleRenderWrapper(
    env=env,
    player_names={0: "GPT-4o-Mini", 1: "Claude-3.5-Haiku"}
)
  • LLMObservationWrapper structures text inputs for models.
  • SimpleRenderWrapper enhances human-readable output.

Step 4: Running the Game Loop

Use a standard RL loop to process turns:

env.reset()
done = False

while not done:
    player_id, observation = env.get_observation()
    action = agents[player_id](observation)
    done, info = env.step(action=action)

# Retrieve final rewards
rewards = env.close()

This loop:

  • Tracks player turns
  • Passes observations to agents
  • Processes actions
  • Ends when the game is over

Full Example

import textarena as ta

# Initialize agents
agents = {
    0: ta.agents.OpenRouterAgent(model_name="GPT-4o-mini"),
    1: ta.agents.OpenRouterAgent(model_name="anthropic/claude-3.5-haiku"),
}

# Create environment
env = ta.make(env_id="Battleship-v0-easy")
env = ta.wrappers.LLMObservationWrapper(env=env)
env = ta.wrappers.SimpleRenderWrapper(
    env=env,
    player_names={0: "GPT-4o-Mini", 1: "Claude-3.5-Haiku"}
)

env.reset()
done = False
while not done:
    player_id, observation = env.get_observation()
    action = agents[player_id](observation)
    done, info = env.step(action=action)

rewards = env.close()

For optimal viewing of SimpleRenderWrapper, open your terminal in a new window.